

Ansible Runner

Ansible Runner is a tool and python library that helps when interfacing with Ansible directly or as part of another system
whether that be through a container image interface, as a standalone tool, or as a Python module that can be imported. The goal
is to provide a stable and consistent interface abstraction to Ansible. This allows Ansible to be embedded into other systems that don’t
want to manage the complexities of the interface on their own (such as CI/CD platforms, Jenkins, or other automated tooling).

Ansible Runner represents the modularization of the part of Ansible Tower/AWX [https://github.com/ansible/awx] that is responsible
for running ansible and ansible-playbook tasks and gathers the output from it. It does this by presenting a common interface that doesn’t
change, even as Ansible itself grows and evolves.

Part of what makes this tooling useful is that it can gather its inputs in a flexible way (See Introduction to Ansible Runner:). It also has a system for storing the
output (stdout) and artifacts (host-level event data, fact data, etc) of the playbook run.

There are 3 primary ways of interacting with Runner

	A standalone command line tool (ansible-runner) that can be started in the foreground or run in the background asynchronously

	A reference container image that can be used as a base for your own images and will work as a standalone container or running in
Openshift or Kubernetes

	A python module - library interface

Ansible Runner can also be configured to send status and event data to other systems using a plugin interface, see Sending Runner Status and Events to External Systems.

Examples of this could include:

	Sending status to Ansible Tower/AWX

	Sending events to an external logging service

Contents:

	Introduction to Ansible Runner

	Installing Ansible Runner

	Sending Runner Status and Events to External Systems

	Using Runner as a standalone command line tool

	Using Runner as a Python Module Interface to Ansible

	Using Runner with Execution Environments

	Using Runner as a container interface to Ansible

	Remote job execution

	Developer Documentation

Indices and tables

	Index

	Module Index

	Search Page

Introduction to Ansible Runner

Runner is intended to be most useful as part of automation and tooling that needs to invoke Ansible and consume its results.
Most of the parameterization of the Ansible command line is also available on the Runner command line but Runner also
can rely on an input interface that is mapped onto a directory structure, an example of which can be seen in the source tree [https://github.com/ansible/ansible-runner/tree/devel/demo].

Further sections in this document refer to the configuration and layout of that hierarchy. This isn’t the only way to interface with Runner
itself. The Python module interface allows supplying these details as direct module parameters in many forms, and the command line interface allows
supplying them directly as arguments, mimicking the behavior of ansible-playbook. Having the directory structure does allow gathering the inputs
from elsewhere and preparing them for consumption by Runner, then the tooling can come along and inspect the results after the run.

This is best seen in the way Ansible AWX uses Runner where most of the content comes from the database (and other content-management components) but
ultimately needs to be brought together in a single place when launching the Ansible task.

Runner Input Directory Hierarchy

This directory contains all necessary inputs. Here’s a view of the demo directory [https://github.com/ansible/ansible-runner/tree/devel/demo] showing
an active configuration.

Note that not everything is required. Defaults will be used or values will be omitted if they are not provided.

.
├── env
│ ├── envvars
│ ├── extravars
│ ├── passwords
│ ├── cmdline
│ ├── settings
│ └── ssh_key
├── inventory
│ └── hosts
└── project
 ├── test.yml
 └── roles
 └── testrole
 ├── defaults
 ├── handlers
 ├── meta
 ├── README.md
 ├── tasks
 ├── tests
 └── vars

The env directory

The env directory contains settings and sensitive files that inform certain aspects of the invocation of the Ansible process, an example of which can
be found in the demo env directory [https://github.com/ansible/ansible-runner/tree/devel/demo/env]. Each of these files can also be represented by a named
pipe providing a bit of an extra layer of security. The formatting and expectation of these files differs slightly depending on what they are representing.

env/envvars

Note

For an example see the demo envvars [https://github.com/ansible/ansible-runner/blob/devel/demo/env/envvars].

Ansible Runner will inherit the environment of the launching shell (or container, or system itself). This file (which can be in json or yaml format) represents
the environment variables that will be added to the environment at run-time:

TESTVAR: exampleval

env/extravars

Note

For an example see the demo extravars [https://github.com/ansible/ansible-runner/blob/devel/demo/env/extravars].

Ansible Runner gathers the extra vars provided here and supplies them to the Ansible Process itself. This file can be in either json or yaml format:

ansible_connection: local
test: val

env/passwords

Note

For an example see the demo passwords [https://github.com/ansible/ansible-runner/blob/devel/demo/env/passwords].

Warning

We expect this interface to change/simplify in the future but will guarantee backwards compatibility. The goal is for the user of Runner to not
have to worry about the format of certain prompts emitted from Ansible itself. In particular, vault passwords need to become more flexible.

Ansible itself is set up to emit passwords to certain prompts, these prompts can be requested (-k for example to prompt for the connection password).
Likewise, prompts can be emitted via vars_prompt [https://docs.ansible.com/ansible/latest/user_guide/playbooks_prompts.html] and also
Ansible Vault [https://docs.ansible.com/ansible/2.5/user_guide/vault.html#vault-ids-and-multiple-vault-passwords].

In order for Runner to respond with the correct password, it needs to be able to match the prompt and provide the correct password. This is currently supported
by providing a yaml or json formatted file with a regular expression and a value to emit, for example:

"^SSH password:\\s*?$": "some_password"
"^BECOME password.*:\\s*?$": "become_password"

env/cmdline

Warning

Current Ansible Runner does not validate the command line arguments passed using this method so it is up to the playbook writer to provide a valid set of options
The command line options provided by this method are lower priority than the ones set by Ansible Runner. For instance, this will not override inventory or limit values.

Ansible Runner gathers command line options provided here as a string and supplies them to the Ansible Process itself. This file should contain the arguments to be added, for example:

--tags one,two --skip-tags three -u ansible --become

env/ssh_key

Note

Currently only a single ssh key can be provided via this mechanism but this is set to change soon [https://github.com/ansible/ansible-runner/issues/51].

This file should contain the ssh private key used to connect to the host(s). Runner detects when a private key is provided and will wrap the call to
Ansible in ssh-agent.

env/settings - Settings for Runner itself

The settings file is a little different than the other files provided in this section in that its contents are meant to control Runner directly.

	idle_timeout: 600 If no output is detected from ansible in this number of seconds the execution will be terminated.

	job_timeout: 3600 The maximum amount of time to allow the job to run for, exceeding this and the execution will be terminated.

	pexpect_timeout: 10 Number of seconds for the internal pexpect command to wait to block on input before continuing

	pexpect_use_poll: True Use poll() function for communication with child processes instead of select(). select() is used when the value is set to False. select() has a known limitation of using only up to 1024 file descriptors.

	suppress_ansible_output: False Allow output from ansible to not be printed to the screen

	fact_cache: 'fact_cache' The directory relative to artifacts where jsonfile fact caching will be stored. Defaults to fact_cache. This is ignored if fact_cache_type is different than jsonfile.

	fact_cache_type: 'jsonfile' The type of fact cache to use. Defaults to jsonfile.

Process Isolation Settings for Runner

The process isolation settings are meant to control the process isolation feature of Runner.

	process_isolation: False Enable limiting what directories on the filesystem the playbook run has access to.

	process_isolation_executable: bwrap Path to the executable that will be used to provide filesystem isolation.

	process_isolation_path: /tmp Path that an isolated playbook run will use for staging.

	process_isolation_hide_paths: None Path or list of paths on the system that should be hidden from the playbook run.

	process_isolation_show_paths: None Path or list of paths on the system that should be exposed to the playbook run.

	process_isolation_ro_paths: None Path or list of paths on the system that should be exposed to the playbook run as read-only.

Container-based Execution

The --containerized setting instructs Ansible Runner to execute Ansible tasks inside a container environment. A default execution environment is provided on Quay.io at ansible/ansible-runner [https://quay.io/repository/ansible/ansible-runner]. Users also have the option of building their own container for executing playbooks, however.

To build an execution environment locally, run:

docker build --rm=true -t custom-container -f Dockerfile .

or, using podman [https://podman.io/releases/]:

podman build --rm=true -t custom-container -f Dockerfile .

To run Ansible Runner with your custom container:

ansible-runner run --container-image custom-container -p playbook.yml

See ansible-runner -h for other container-related options.

Performance Data Collection Settings for Runner

Runner is capable of collecting performance data (namely cpu usage, memory usage, and pid count) during the execution of a playbook run.

Resource profiling is made possible by the use of control groups (often referred to simply as cgroups). When a process runs inside of a cgroup, the resources used by that specific process can be measured.

Before enabling Runner’s resource profiling feature, users must create a cgroup that Runner can use. It is worth noting that only privileged users can create cgroups. The new cgroup should be associated with the same user (and related group) that will be invoking Runner. The following command accomplishes this on a RHEL system:

sudo yum install libcgroup-tools
sudo cgcreate -a `whoami` -t `whoami` -g cpuacct,memory,pids:ansible-runner

In the above command, cpuacct, memory, and pids refer to kernel resource controllers, while ansible-runner refers to the name of the cgroup being created. More detailed information on the structure of cgroups can be found in the RHEL guide on Managing, monitoring, and updating the kernel [https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/setting-limits-for-applications_managing-monitoring-and-updating-the-kernel]

After a cgroup has been created, the following settings can be used to configure resource profiling. Note that resource_profiling_base_cgroup must match the name of the cgroup you create.

	resource_profiling: False Enable performance data collection.

	resource_profiling_base_cgroup: ansible-runner Top-level cgroup used to measure playbook resource utilization.

	resource_profiling_cpu_poll_interval: 0.25 Polling interval in seconds for collecting cpu usage.

	resource_profiling_memory_poll_interval: 0.25 Polling interval in seconds for collecting memory usage.

	resource_profiling_pid_poll_interval: 0.25 Polling interval in seconds for measuring PID count.

	resource_profiling_results_dir: None Directory where resource utilization data will be written (if not specified, will be placed in the profiling_data folder under the private data directory).

Inventory

The Runner inventory location under the private data dir has the same expectations as inventory provided directly to ansible itself. It can
be either a single file or script or a directory containing static inventory files or scripts. This inventory is automatically loaded and provided to
Ansible when invoked and can be further overridden on the command line or via the ANSIBLE_INVENTORY environment variable to specify the hosts directly.
Giving an absolute path for the inventory location is best practice, because relative paths are interpreted relative to the current working directory
which defaults to the project directory.

Project

The Runner project directory is the playbook root containing playbooks and roles that those playbooks can consume directly. This is also the
directory that will be set as the current working directory when launching the Ansible process.

Modules

Runner has the ability to execute modules directly using Ansible ad-hoc mode.

Roles

Runner has the ability to execute Roles [https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html] directly without first needing
a playbook to reference them. This directory holds roles used for that. Behind the scenes, Runner will generate a playbook and invoke the Role.

Runner Artifacts Directory Hierarchy

This directory will contain the results of Runner invocation grouped under an identifier directory. This identifier can be supplied to Runner directly
and if not given, an identifier will be generated as a UUID [https://docs.python.org/3/library/uuid.html#uuid.uuid4]. This is how the directory structure looks
from the top level:

.
├── artifacts
│ └── identifier
├── env
├── inventory
├── profiling_data
├── project
└── roles

The artifact directory itself contains a particular structure that provides a lot of extra detail from a running or previously-run invocation of Ansible/Runner:

.
├── artifacts
│ └── 37f639a3-1f4f-4acb-abee-ea1898013a25
│ ├── fact_cache
│ │ └── localhost
│ ├── job_events
│ │ ├── 1-34437b34-addd-45ae-819a-4d8c9711e191.json
│ │ ├── 2-8c164553-8573-b1e0-76e1-000000000006.json
│ │ ├── 3-8c164553-8573-b1e0-76e1-00000000000d.json
│ │ ├── 4-f16be0cd-99e1-4568-a599-546ab80b2799.json
│ │ ├── 5-8c164553-8573-b1e0-76e1-000000000008.json
│ │ ├── 6-981fd563-ec25-45cb-84f6-e9dc4e6449cb.json
│ │ └── 7-01c7090a-e202-4fb4-9ac7-079965729c86.json
│ ├── rc
│ ├── status
│ └── stdout

The rc file contains the actual return code from the Ansible process.

The status file contains one of three statuses suitable for displaying:

	success: The Ansible process finished successfully

	failed: The Ansible process failed

	timeout: The Runner timeout (see env/settings - Settings for Runner itself)

The stdout file contains the actual stdout as it appears at that moment.

Runner Artifact Job Events (Host and Playbook Events)

Runner gathers the individual task and playbook events that are emitted as part of the Ansible run. This is extremely helpful if you don’t want
to process or read the stdout returned from Ansible as it contains much more detail and status than just the plain stdout.
It does some of the heavy lifting of assigning order to the events and stores them in json format under the job_events artifact directory.
It also takes it a step further than normal Ansible callback plugins in that it will store the stdout associated with the event alongside the raw
event data (along with stdout line numbers). It also generates dummy events for stdout that didn’t have corresponding host event data:

{
 "uuid": "8c164553-8573-b1e0-76e1-000000000008",
 "parent_uuid": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "counter": 5,
 "stdout": "\r\nTASK [debug] ***",
 "start_line": 5,
 "end_line": 7,
 "event": "playbook_on_task_start",
 "event_data": {
 "playbook": "test.yml",
 "playbook_uuid": "34437b34-addd-45ae-819a-4d8c9711e191",
 "play": "all",
 "play_uuid": "8c164553-8573-b1e0-76e1-000000000006",
 "play_pattern": "all",
 "task": "debug",
 "task_uuid": "8c164553-8573-b1e0-76e1-000000000008",
 "task_action": "debug",
 "task_path": "\/home\/mjones\/ansible\/ansible-runner\/demo\/project\/test.yml:3",
 "task_args": "msg=Test!",
 "name": "debug",
 "is_conditional": false,
 "pid": 10640
 },
 "pid": 10640,
 "created": "2018-06-07T14:54:58.410605"
}

If the playbook runs to completion without getting killed, the last event will always be the stats event:

{
 "uuid": "01c7090a-e202-4fb4-9ac7-079965729c86",
 "counter": 7,
 "stdout": "\r\nPLAY RECAP ***\r\n\u001b[0;32mlocalhost,\u001b[0m : \u001b[0;32mok=2 \u001b[0m changed=0 unreachable=0 failed=0 \r\n",
 "start_line": 10,
 "end_line": 14,
 "event": "playbook_on_stats",
 "event_data": {
 "playbook": "test.yml",
 "playbook_uuid": "34437b34-addd-45ae-819a-4d8c9711e191",
 "changed": {

 },
 "dark": {

 },
 "failures": {

 },
 "ok": {
 "localhost,": 2
 },
 "processed": {
 "localhost,": 1
 },
 "skipped": {

 },
 "artifact_data": {

 },
 "pid": 10640
 },
 "pid": 10640,
 "created": "2018-06-07T14:54:58.424603"
}

Note

The Runner module interface presents a programmatic interface to these events that allow getting the final status and performing host filtering of task events.

Runner Profiling Data Directory

If resource profiling is enabled for Runner the profiling_data directory will be populated with a set of files containing the profiling data:

.
├── profiling_data
│ ├── 0-34437b34-addd-45ae-819a-4d8c9711e191-cpu.json
│ ├── 0-34437b34-addd-45ae-819a-4d8c9711e191-memory.json
│ ├── 0-34437b34-addd-45ae-819a-4d8c9711e191-pids.json
│ ├── 1-8c164553-8573-b1e0-76e1-000000000006-cpu.json
│ ├── 1-8c164553-8573-b1e0-76e1-000000000006-memory.json
│ └── 1-8c164553-8573-b1e0-76e1-000000000006-pids.json

Each file is in JSON text format [https://tools.ietf.org/html/rfc7464#section-2.2]. Each line of the file will begin with a record separator (RS), continue with a JSON dictionary, and conclude with a line feed (LF) character. The following provides an example of what the resource files may look like. Note that that since the RS and LF are control characters, they are not actually printed below:

==> 0-525400c9-c704-29a6-4107-00000000000c-cpu.json <==
{"timestamp": 1568977988.6844425, "task_name": "Gathering Facts", "task_uuid": "525400c9-c704-29a6-4107-00000000000c", "value": 97.12799768097156}
{"timestamp": 1568977988.9394386, "task_name": "Gathering Facts", "task_uuid": "525400c9-c704-29a6-4107-00000000000c", "value": 94.17538298892688}
{"timestamp": 1568977989.1901696, "task_name": "Gathering Facts", "task_uuid": "525400c9-c704-29a6-4107-00000000000c", "value": 64.38272588006255}
{"timestamp": 1568977989.4594045, "task_name": "Gathering Facts", "task_uuid": "525400c9-c704-29a6-4107-00000000000c", "value": 83.77387744259856}

==> 0-525400c9-c704-29a6-4107-00000000000c-memory.json <==
{"timestamp": 1568977988.4281094, "task_name": "Gathering Facts", "task_uuid": "525400c9-c704-29a6-4107-00000000000c", "value": 36.21484375}
{"timestamp": 1568977988.6842303, "task_name": "Gathering Facts", "task_uuid": "525400c9-c704-29a6-4107-00000000000c", "value": 57.87109375}
{"timestamp": 1568977988.939303, "task_name": "Gathering Facts", "task_uuid": "525400c9-c704-29a6-4107-00000000000c", "value": 66.60546875}
{"timestamp": 1568977989.1900482, "task_name": "Gathering Facts", "task_uuid": "525400c9-c704-29a6-4107-00000000000c", "value": 71.4609375}
{"timestamp": 1568977989.4592078, "task_name": "Gathering Facts", "task_uuid": "525400c9-c704-29a6-4107-00000000000c", "value": 38.25390625}

==> 0-525400c9-c704-29a6-4107-00000000000c-pids.json <==
{"timestamp": 1568977988.4284189, "task_name": "Gathering Facts", "task_uuid": "525400c9-c704-29a6-4107-00000000000c", "value": 5}
{"timestamp": 1568977988.6845856, "task_name": "Gathering Facts", "task_uuid": "525400c9-c704-29a6-4107-00000000000c", "value": 6}
{"timestamp": 1568977988.939547, "task_name": "Gathering Facts", "task_uuid": "525400c9-c704-29a6-4107-00000000000c", "value": 8}
{"timestamp": 1568977989.1902773, "task_name": "Gathering Facts", "task_uuid": "525400c9-c704-29a6-4107-00000000000c", "value": 13}
{"timestamp": 1568977989.4593227, "task_name": "Gathering Facts", "task_uuid": "525400c9-c704-29a6-4107-00000000000c", "value": 6}

	Resource profiling data is grouped by playbook task.

	For each task, there will be three files, corresponding to cpu, memory and pid count data.

	Each file contains a set of data points collected over the course of a playbook task.

	If a task executes quickly and the polling rate for a given metric is large enough, it is possible that no profiling data may be collected during the task’s execution. If this is the case, no data file will be created.

Installing Ansible Runner

Ansible Runner requires Python >= 3.8 and is provided from several different locations depending on how you want to use it.

Using pip

To install the latest version from the Python Package Index:

$ pip install ansible-runner

Fedora

To install from the latest Fedora sources:

$ dnf install python-ansible-runner

Debian

Add an ansible-runner repository:

$ apt-get update
$ echo 'deb https://releases.ansible.com/ansible-runner/deb/ <trusty|xenial|stretch> main' > /etc/apt/sources.list.d/ansible.list

Add a key:

$ apt-key adv --keyserver keyserver.ubuntu.com --recv 3DD29021

Install the package:

$ apt-get update
$ apt-get install ansible-runner

From source

Check out the source code from github [https://github.com/ansible/ansible-runner]:

$ git clone git://github.com/ansible/ansible-runner

Or download from the releases page [https://github.com/ansible/ansible-runner/releases]

Then install:

$ pip install virtualenvwrapper
$ mkvirtualenv ansible-runner
$ pip install -e .

Build the distribution

To produce both wheel and sdist:

make dist

To produce an installable wheel:

make wheel

To produce a distribution tarball:

make sdist

Building the base container image

Make sure the wheel distribution is built (see Build the distribution) and run:

make image

Building the RPM

The RPM build uses a container image to bootstrap the environment in order to produce the RPM. Make sure you have docker
installed and proceed with:

make rpm

Sending Runner Status and Events to External Systems

Runner can store event and status data locally for retrieval, it can also emit this information via callbacks provided to the module interface.

Alternatively Runner can be configured to send events to an external system via installable plugins, there are currently two available

Event Structure

There are two types of events that are emitted via plugins:

	status events:

These are sent whenever Runner’s status changes (see Runner.status_handler) for example:

{"status": "running", "runner_ident": "XXXX" }

	ansible events:

These are sent during playbook execution for every event received from Ansible (see Playbook and Host Events) for example:

{"runner_ident": "XXXX", <rest of event structure }

HTTP Status/Event Emitter Plugin

This sends status and event data to a URL in the form of json encoded POST requests.

This plugin is available from the ansible-runner-http github repo [https://github.com/ansible/ansible-runner-http] and is also available to be installed from
pip:

$ pip install ansible-runner-http

In order to configure it, you can provide details in the Runner Settings file (see env/settings - Settings for Runner itself):

	runner_http_url: The url to receive the POST

	runner_http_headers: Headers to send along with the request.

The plugin also supports unix file-based sockets with:

	runner_http_url: The path to the unix socket

	runner_http_path: The path that will be included as part of the request to the socket

Some of these settings are also available as environment variables:

	RUNNER_HTTP_URL

	RUNNER_HTTP_PATH

ZeroMQ Status/Event Emitter Plugin

TODO

Writing your own Plugin

In order to write your own plugin interface and have it be picked up and used by Runner there are a few things that you’ll need to do.

	Declare the module as a Runner entrypoint in your setup file
(ansible-runner-http has a good example of this [https://github.com/ansible/ansible-runner-http/blob/master/setup.py]):

entry_points=('ansible_runner.plugins': 'modname = your_python_package_name'),

	Implement the status_handler() and event_handler() functions at the top of your package, for example see
ansible-runner-http events.py [https://github.com/ansible/ansible-runner-http/blob/master/ansible_runner_http/events.py] and the __init__
import at the top of the module package [https://github.com/ansible/ansible-runner-http/blob/master/ansible_runner_http/__init__.py]

After installing this, Runner will see the plugin and invoke the functions when status and events are sent. If there are any errors in your plugin
they will be raised immediately and Runner will fail.

Using Runner as a standalone command line tool

The Ansible Runner command line tool can be used as a standard command line interface to Ansible itself but is primarily intended
to fit into automation and pipeline workflows. Because of this, it has a bit of a different workflow than Ansible itself because you can select between a few different modes to launch the command.

While you can launch Runner and provide it all of the inputs as arguments to the command line (as you do with Ansible itself),
there is another interface where inputs are gathered into a single location referred to in the command line parameters as private_data_dir.
(see Runner Input Directory Hierarchy)

To view the parameters accepted by ansible-runner:

$ ansible-runner --help

An example invocation of the standalone ansible-runner utility:

$ ansible-runner run /tmp/private -p playbook.yml

Where playbook.yml is the playbook from the /tmp/private/projects directory, and run is the command mode you want to invoke Runner with

The different commands that runner accepts are:

	run starts ansible-runner in the foreground and waits until the underlying Ansible process completes before returning

	start starts ansible-runner as a background daemon process and generates a pid file

	stop terminates an ansible-runner process that was launched in the background with start

	is-alive checks the status of an ansible-runner process that was started in the background with start

While Runner is running it creates an artifacts directory (see Runner Artifacts Directory Hierarchy) regardless of what mode it was started
in. The resulting output and status from Ansible will be located here. You can control the exact location underneath the artifacts directory
with the -i IDENT argument to ansible-runner, otherwise a random UUID will be generated.

Executing Runner in the foreground

When launching Runner with the run command, as above, the program will stay in the foreground and you’ll see output just as you expect from a normal
Ansible process. Runner will still populate the artifacts directory, as mentioned in the previous section, to preserve the output and allow processing
of the artifacts after exit.

Executing Runner in the background

When launching Runner with the start command, the program will generate a pid file and move to the background. You can check its status with the
is-alive command, or terminate it with the stop command. You can find the stdout, status, and return code in the artifacts directory.

Running Playbooks

An example invocation using demo as private directory:

$ ansible-runner run demo --playbook test.yml

Running Modules Directly

An example invocating the debug module with demo as a private directory:

$ ansible-runner run demo -m debug --hosts localhost -a msg=hello

Running Roles Directly

An example invocation using demo as private directory and localhost as target:

$ ansible-runner run demo --role testrole --hosts localhost

Ansible roles directory can be provided with --roles-path option. Role variables can be passed with --role-vars at runtime.

Running with Process Isolation

Runner supports process isolation. Process isolation creates a new mount namespace where the root is on a tmpfs that is invisible from the host
and is automatically cleaned up when the last process exits. You can enable process isolation by providing the --process-isolation argument on
the command line. Runner as of version 2.0 defaults to using podman as the process isolation executable, but supports
using any executable that is compatible with the bubblewrap CLI arguments by passing in the --process-isolation-executable argument:

$ ansible-runner --process-isolation ...

Runner supports various process isolation arguments that allow you to provide configuration details to the process isolation executable. To view the complete
list of arguments accepted by ansible-runner:

$ ansible-runner --help

Running with Directory Isolation

If you need to be able to execute multiple tasks in parallel that might conflict with each other or if you want to make sure a single invocation of
Ansible/Runner doesn’t pollute or overwrite the playbook content you can give a base path:

$ ansible-runner --directory-isolation-base-path /tmp/runner

Runner will copy the project directory to a temporary directory created under that path, set it as the working directory, and execute from that location.
After running that temp directory will be cleaned up and removed.

Outputting json (raw event data) to the console instead of normal output

Runner supports outputting json event data structure directly to the console (and stdout file) instead of the standard Ansible output, thus
mimicking the behavior of the json output plugin. This is in addition to the event data that’s already present in the artifact directory. All that is needed
is to supply the -j argument on the command line:

$ ansible-runner ... -j ...

Cleaning up artifact directories

Using the command line argument --rotate-artifacts allows you to control the number of artifact directories that are present. Given a number as the parameter
for this argument will cause Runner to clean up old artifact directories. The default value of 0 disables artifact directory cleanup.

Using Runner as a Python Module Interface to Ansible

Ansible Runner is intended to provide a directly importable and usable API for interfacing with Ansible itself and exposes a few helper interfaces.

The modules center around the Runner object. The helper methods will either return an instance of this object which provides an
interface to the results of executing the Ansible command or a tuple the actual output and error response based on the interface.

Ansible Runner itself is a wrapper around Ansible execution and so adds plugins and interfaces to the system in order to gather extra information and
process/store it for use later.

Helper Interfaces

The helper interfaces provides a quick way of supplying the recommended inputs in order to launch a Runner process. These interfaces also allow overriding and providing inputs beyond the scope of what the standalone or container interfaces
support. You can see a full list of the inputs in the linked module documentation.

run() helper function

ansible_runner.interface.run()

When called, this function will take the inputs (either provided as direct inputs to the function or from the Runner Input Directory Hierarchy), and execute Ansible. It will run in the
foreground and return the Runner object when finished.

run_async() helper function

ansible_runner.interface.run_async()

Takes the same arguments as ansible_runner.interface.run() but will launch Ansible asynchronously and return a tuple containing
the thread object and a Runner object. The Runner object can be inspected during execution.

run_command() helper function

ansible_runner.interface.run_command()

When called, this function will take the inputs (either provided as direct inputs to the function or from the Runner Input Directory Hierarchy), and execute the command passed either
locally or within an container based on the parameters passed. It will run in the foreground and return a tuple of output and error response when finished. While running
the within container image command the current local working diretory will be volume mounted within the container, in addition to this for any of ansible command line
utilities the inventory, vault-password-file, private-key file path will be volume mounted if provided in the cmdline_args parameters.

run_command_async() helper function

ansible_runner.interface.run_command_async()

Takes the same arguments as ansible_runner.interface.run_command() but will launch asynchronously and return a tuple containing
the thread object and a Runner object. The Runner object can be inspected during execution.

get_plugin_docs() helper function

ansible_runner.interface.get_plugin_docs()

When called, this function will take the inputs, and execute the ansible-doc command to return the either the plugin-docs or playbook snippet for the passed
list of plugin names. The plugin docs can be fetched either from locally installed plugins or from within an container image based on the parameters passed.
It will run in the foreground and return a tuple of output and error response when finished. While running the command within the container the current local
working diretory will be volume mounted within the container.

get_plugin_docs_async() helper function

ansible_runner.interface.get_plugin_docs_async()

Takes the same arguments as ansible_runner.interface.get_plugin_docs_async() but will launch asynchronously and return a tuple containing
the thread object and a Runner object. The Runner object can be inspected during execution.

get_plugin_list() helper function

ansible_runner.interface.get_plugin_list()

When called, this function will take the inputs, and execute the ansible-doc command to return the list of installed plugins. The installed plugin can be fetched
either from local environment or from within an container image based on the parameters passed. It will run in the foreground and return a tuple of output and error
response when finished. While running the command within the container the current local working diretory will be volume mounted within the container.

get_inventory() helper function

ansible_runner.interface.get_inventory()

When called, this function will take the inputs, and execute the ansible-inventory command to return the inventory releated information based on the action.
If action is list it will return all the applicable configuration options for ansible, for host action it will return information
of a single host andf for graph action it will return the inventory. The exectuin will be in the foreground and return a tuple of output and error
response when finished. While running the command within the container the current local working diretory will be volume mounted within the container.

get_ansible_config() helper function

ansible_runner.interface.get_ansible_config()

When called, this function will take the inputs, and execute the ansible-config command to return the Ansible configuration releated information based on the action.
If action is list it will return all the hosts related information including the host and group variables, for dump action it will return the enitre active configuration
and it can be customized to return only the changed configuration value by settingg the only_changed boolean parameter to True. For view action it will return the
view of the active configuration file. The exectuin will be in the foreground and return a tuple of output and error response when finished.
While running the command within the container the current local working diretory will be volume mounted within the container.

The Runner object

The Runner object is returned as part of the execution of Ansible itself. Since it wraps both execution and output
it has some helper methods for inspecting the results. Other than the methods and indirect properties, the instance of the object itself contains two direct
properties:

	rc will represent the actual return code of the Ansible process

	
	status will represent the state and can be one of:
	
	unstarted: This is a very brief state where the Runner task has been created but hasn’t actually started yet.

	successful: The ansible process finished successfully.

	failed: The ansible process failed.

Runner.stdout

The Runner object contains a property ansible_runner.runner.Runner.stdout which will return an open file
handle containing the stdout of the Ansible process.

Runner.stderr

When the runner_mode is set to subprocess the Runner object uses a property ansible_runner.runner.Runner.stderr which
will return an open file handle containing the stderr of the Ansible process.

Runner.events

ansible_runner.runner.Runner.events is a generator that will return the Playbook and Host Events as Python dict objects.

Runner.stats

ansible_runner.runner.Runner.stats is a property that will return the final playbook stats event from Ansible in the form of a Python dict

Runner.host_events

ansible_runner.runner.Runner.host_events() is a method that, given a hostname, will return a list of only Ansible event data executed on that Host.

Runner.get_fact_cache

ansible_runner.runner.Runner.get_fact_cache() is a method that, given a hostname, will return a dictionary containing the Facts [https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variables-discovered-from-systems-facts] stored for that host during execution.

Runner.event_handler

A function passed to __init__ of :class:Runner <ansible_runner.runner.Runner>, this is invoked every time an Ansible event is received. You can use this to
inspect/process/handle events as they come out of Ansible. This function should return True to keep the event, otherwise it will be discarded.

Runner.cancel_callback

A function passed to __init__ of Runner, and to the ansible_runner.interface.run() interface functions.
This function will be called for every iteration of the ansible_runner.interface.run() event loop and should return True [https://docs.python.org/3/library/constants.html#True]
to inform Runner cancel and shutdown the Ansible process or False [https://docs.python.org/3/library/constants.html#False] to allow it to continue.

Runner.finished_callback

A function passed to __init__ of Runner, and to the ansible_runner.interface.run() interface functions.
This function will be called immediately before the Runner event loop finishes once Ansible has been shut down.

Runner.status_handler

A function passed to __init__ of Runner and to the ansible_runner.interface.run() interface functions.
This function will be called any time the status changes, expected values are:

	starting: Preparing to start but hasn’t started running yet

	running: The Ansible task is running

	canceled: The task was manually canceled either via callback or the cli

	timeout: The timeout configured in Runner Settings was reached (see env/settings - Settings for Runner itself)

	failed: The Ansible process failed

Usage examples

import ansible_runner
r = ansible_runner.run(private_data_dir='/tmp/demo', playbook='test.yml')
print("{}: {}".format(r.status, r.rc))
successful: 0
for each_host_event in r.events:
 print(each_host_event['event'])
print("Final status:")
print(r.stats)

import ansible_runner
r = ansible_runner.run(private_data_dir='/tmp/demo', host_pattern='localhost', module='shell', module_args='whoami')
print("{}: {}".format(r.status, r.rc))
successful: 0
for each_host_event in r.events:
 print(each_host_event['event'])
print("Final status:")
print(r.stats)

run the role named 'myrole' contained in the '<private_data_dir>/project/roles' directory
r = ansible_runner.run(private_data_dir='/tmp/demo', role='myrole')
print("{}: {}".format(r.status, r.rc))
print(r.stats)

run ansible/generic commands in interactive mode within container
out, err, rc = ansible_runner.run_command(
 executable_cmd='ansible-playbook',
 cmdline_args=['gather.yaml', '-i', 'inventory', '-vvvv', '-k'],
 input_fd=sys.stdin,
 output_fd=sys.stdout,
 error_fd=sys.stderr,
 host_cwd='/home/demo',
 process_isolation=True,
 container_image='network-ee'
)
print("rc: {}".format(rc))
print("out: {}".format(out))
print("err: {}".format(err))

run ansible/generic commands in interactive mode locally
out, err, rc = ansible_runner.run_command(
 executable_cmd='ansible-playbook',
 cmdline_args=['gather.yaml', '-i', 'inventory', '-vvvv', '-k'],
 input_fd=sys.stdin,
 output_fd=sys.stdout,
 error_fd=sys.stderr,
)
print("rc: {}".format(rc))
print("out: {}".format(out))
print("err: {}".format(err))

get plugin docs from within container
out, err = ansible_runner.get_plugin_docs(
 plugin_names=['vyos.vyos.vyos_command'],
 plugin_type='module',
 response_format='json',
 process_isolation=True,
 container_image='network-ee'
)
print("out: {}".format(out))
print("err: {}".format(err))

get plugin docs from within container in async mode
thread_obj, runner_obj = ansible_runner.get_plugin_docs_async(
 plugin_names=['ansible.netcommon.cli_config', 'ansible.netcommon.cli_command'],
 plugin_type='module',
 response_format='json',
 process_isolation=True,
 container_image='network-ee'
)
while runner_obj.status not in ['canceled', 'successful', 'timeout', 'failed']:
 time.sleep(0.01)
 continue

print("out: {}".format(runner_obj.stdout.read()))
print("err: {}".format(runner_obj.stderr.read()))

get plugin list installed on local system
out, err = ansible_runner.get_plugin_list()
print("out: {}".format(out))
print("err: {}".format(err))

get plugins with file list from within container
out, err = ansible_runner.get_plugin_list(list_files=True, process_isolation=True, container_image='network-ee')
print("out: {}".format(out))
print("err: {}".format(err))

get list of changed ansible configuration values
out, err = ansible_runner.get_ansible_config(action='dump', config_file='/home/demo/ansible.cfg', only_changed=True)
print("out: {}".format(out))
print("err: {}".format(err))

get ansible inventory information
out, err = ansible_runner.get_inventory(
 action='list',
 inventories=['/home/demo/inventory1', '/home/demo/inventory2'],
 response_format='json',
 process_isolation=True,
 container_image='network-ee'
)
print("out: {}".format(out))
print("err: {}".format(err))

Providing custom behavior and inputs

TODO

The helper methods are just one possible entrypoint, extending the classes used by these helper methods can allow a lot more custom behavior and functionality.

Show:

	How Runner Config is used and how overriding the methods and behavior can work

	Show how custom cancel and status callbacks can be supplied.

Using Runner with Execution Environments

Execution Environments are meant to be a consistent, reproducible, portable,
and sharable method to run Ansible Automation jobs in the exact same way on
your laptop as they are executed in Ansible AWX [https://github.com/ansible/awx/].
This aids in the development of automation jobs and Ansible Content that is
meant to be run in Ansible AWX, Ansible Tower [https://www.ansible.com/products/tower],
or via Red Hat Ansible Automation Platform [https://www.ansible.com/products/automation-platform]
in a predictable way.

More specifically, the term Execution Environments within the context of
Ansible Runner refers to the container runtime execution of Ansible via
Ansible Runner within an OCI Compliant Container Runtime [https://github.com/opencontainers/runtime-spec] using an OCI Compliant
Container Image [https://github.com/opencontainers/image-spec/] that
appropriately bundles Ansible Base [https://github.com/ansible/ansible],
Ansible Collection Content [https://github.com/ansible-collections/overview],
and the runtime dependencies required to support these contents. The base
image is the Red Hat Enterprise Linux Universal Base Image [https://developers.redhat.com/products/rhel/ubi] and the build tooling
provided by Ansible Builder [https://github.com/ansible/ansible-builder]
aids in the creation of these images.

All aspects of running Ansible Runner in standalone mode (see: Using Runner as a standalone command line tool)
are true here with the exception that the process isolation is inherently a
container runtime (podman [https://podman.io/] by default).

Using Execution Environments from Protected Registries

When a job is run that uses an execution environment container image from a private/protected registry,
you will first need to authenticate to the registry.

If you are running the job manually via ansible-runner run, logging in on the command line via
podman login first is a method of authentication. Alternatively, creating a container_auth_data
dictionary with the keys host, username, and password and putting that in the job’s env/settings
file is another way to ensure a successful pull of a protected execution environment container image.
Note that this involves listing sensitive information in a file which will not automatically get cleaned
up after the job run is complete.

When running a job remotely via AWX or Ansible Tower, Ansible Runner can pick up the authentication
information from the Container Registry Credential that was provided by the user. The host,
username, password, and verify_ssl inputs from the credential are passed into Ansible Runner via the container_auth_data
dictionary as key word arguments into a json file which gets deleted at the end of the job run (even if
the job was canceled/interrupted), enabling the bypassing of sensitive information from any potentially
persistent job-related files.

Notes and Considerations

There are some differences between using Ansible Runner and running Ansible directly from the
command line that have to do with configuration, content locality, and secret data.

Secrets

Typically with Ansible you are able to provide secret data via a series of
mechanisms, many of which are pluggable and configurable. When using
Ansible Runner, however, certain considerations need to be made; these are analogous to
how Ansible AWX and Tower manage this information.

See Runner Input Directory Hierarchy for more information

Container Names

Like all ansible-runner jobs, each job has an identifier associated with it
which is also the name of the artifacts subfolder where results are saved to.
When a container for job isolation is launched, it will be given a name
of ansible_runner_<job identifier>. Some characters from the job
identifier may be replaced with underscores for compatibility with
names that Podman and Docker allow.

This name is used internally if a command needs to be ran against the container
at a later time (e.g., to stop the container when the job is canceled).

~/.ssh/ symlinks

In order to make the run container execution of Ansible
easier, Ansible Runner will automatically bind mount your local ssh agent
UNIX-domain socket (SSH_AUTH_SOCK) into the container runtime. However, this
does not work if files in your ~/.ssh/ directory happen to be symlinked to
another directory that is also not mounted into the container runtime. The Ansible
Runner run subcommand provides the --container-volume-mount
option to address this, among other things.

Here is an example of an ssh config file that is a symlink:

$ $ ls -l ~/.ssh/config
lrwxrwxrwx. 1 myuser myuser 34 Jul 15 19:27 /home/myuser/.ssh/config -> /home/myuser/dotfiles/ssh_config

$ ansible-runner run \
 --container-volume-mount /home/myuser/dotfiles/:/home/myuser/dotfiles/ \
 --process-isolation --process-isolation-executable podman \
 /tmp/private --playbook my_playbook.yml -i my_inventory.ini

Using Runner as a container interface to Ansible

The design of Ansible Runner makes it especially suitable for controlling the execution of Ansible from within a container for single-purpose
automation workflows. A reference container image definition is provided [https://github.com/ansible/ansible-runner/blob/master/Dockerfile] and
is also published to Quay.io [https://quay.io/repository/ansible/ansible-runner].

$ podman run --rm -e RUNNER_PLAYBOOK=test.yml -v $PWD/demo:/runner quay.io/ansible/ansible-runner:latest
 PLAY [all] ***

 TASK [Gathering Facts] ***
 ok: [localhost]

 TASK [debug] ***
 ok: [localhost] => {
 "msg": "Test!"
 }

 PLAY RECAP ***
 localhost : ok=2 changed=0 unreachable=0 failed=0

The reference container image is purposefully light-weight and only containing the dependencies necessary to run ansible-runner itself. It’s
intended to be overridden.

Overriding the reference container image

TODO

Gathering output from the reference container image

TODO

Changing the console output to emit raw events

This can be useful when directing task-level event data to an external system by means of the container’s console output.

See Running with Process Isolation

Remote job execution

Ansible Runner supports the concept that a job run may be requested on one host but executed on another.
This capability is primarily intended to be used by Receptor [http://www.github.com/project-receptor/receptor].

Support for this in Runner involves a three phase process.

	Transmit: Convert the job to a binary format that can be sent to the worker node.

	Worker: Actually execute the job.

	Process: Receive job results and process them.

The following command illustrates how the three phases work together:

$ ansible-runner transmit ./demo -p test.yml | ansible-runner worker | ansible-runner process ./demo

In this example, the ansible-runner transmit command is given a private data directory of ./demo and told to select
the test.yml playbook from it. Instead of executing the playbook as ansible-runner run would do, the data dir
and command line parameters are converted to a compressed binary stream that is emitted as stdout. The transmit
command generally takes the same command line parameters as the run command.

The ansible-runner worker command accepts this stream, runs the playbook, and generates a new compressed binary
stream of the resulting job events and artifacts.
This command optionally accepts the --private-data-dir option.
If provided, it will extract the contents sent from ansible-runner transmit into that directory.

The ansible-runner process command accepts the result stream from the worker, and fires all the normal callbacks
and does job event processing. In the command above, this results in printing the playbook output and saving
artifacts to the data dir. The process command takes a data dir as a parameter, to know where to save artifacts.

Cleanup of Resources Used by Jobs

The transmit and process commands do not offer any automatic deletion of the
private data directory or artifacts, because these are how the user interacts with runner.

When running ansible-runner worker, if no --private-data-dir is given,
it will extract the contents to a temporary directory which is deleted at the end of execution.
If the --private-data-dir option is given, then the directory will persist after the run finishes
unless the --delete flag is also set. In that case, the private data directory will be deleted before execution if it exists and also removed after execution.

The following command offers out-of-band cleanup.

$ ansible-runner worker cleanup –file-pattern=/tmp/foo_*

This would assure that old directories that fit the file glob “/tmp/foo_*” are deleted,
which would could be used to assure cleanup of paths created by commands like
ansible-runner worker --private_data_dir=/tmp/foo_3, for example.
NOTE: see the --grace-period option, which sets the time window.

This command also takes a --remove-images option to run the podman or docker rmi command.
There is otherwise no automatic cleanup of images used by a run,
even if container_auth_data is used to pull from a private container registry.
To be sure that layers are deleted as well, the --image-prune flag is necessary.

Python API

Python code importing Ansible Runner can make use of these facilities by setting the streamer parameter to
ansible_runner.interface.run. This parameter can be set to transmit, worker or process to invoke
each of the three stages. Other parameters are as normal in the CLI.

Developer Documentation

	ansible_runner package
	Subpackages
	ansible_runner.callbacks package

	ansible_runner.config package

	ansible_runner.display_callback package

	Submodules
	ansible_runner.exceptions module

	ansible_runner.interface module

	ansible_runner.loader module

	ansible_runner.runner module

	ansible_runner.runner_config module

	ansible_runner.utils module

ansible_runner package

Subpackages

	ansible_runner.callbacks package
	Submodules
	ansible_runner.callbacks.awx_display module

	ansible_runner.callbacks.minimal module

	ansible_runner.config package
	Submodules
	ansible_runner.config.runner module

	ansible_runner.display_callback package
	Submodules
	ansible_runner.display_callback.display module

	ansible_runner.display_callback.events module

	ansible_runner.display_callback.minimal module

	ansible_runner.display_callback.module module

	Module contents

Submodules

ansible_runner.exceptions module

	
exception ansible_runner.exceptions.AnsibleRunnerException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Generic Runner Error

	
exception ansible_runner.exceptions.CallbackError

	Bases: ansible_runner.exceptions.AnsibleRunnerException

Exception occurred in Callback

	
exception ansible_runner.exceptions.ConfigurationError

	Bases: ansible_runner.exceptions.AnsibleRunnerException

Misconfiguration of Runner

ansible_runner.interface module

	
ansible_runner.interface.get_ansible_config(action, config_file=None, only_changed=None, **kwargs)

	Run an ansible-config command to get ansible configuration releated details.

	Parameters

	
	action (str [https://docs.python.org/3/library/stdtypes.html#str]) – Valid values are one of list, dump, view
list returns all config options, dump returns the active configuration and
view returns the view of configuration file.

	config_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to configuration file, defaults to first file found in precedence. .

	only_changed (bool [https://docs.python.org/3/library/functions.html#bool]) – The boolean value when set to True returns only the configurations that have changed
from the default. This parameter is applicable only when action is set to dump.

	runner_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The applicable values are pexpect and subprocess. Default is set to subprocess.

	host_cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) – The current working directory from which the command in executable_cmd should be be executed.

	envvars (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be used when running Ansible. Environment variables will also be
read from env/envvars in private_data_dir

	passwords (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing password prompt patterns and response values used when processing output from Ansible.
Passwords will also be read from env/passwords in private_data_dir.

	settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing settings values for the ansible-runner runtime environment. These will also
be read from env/settings in private_data_dir.

	ssh_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ssh private key passed to ssh-agent as part of the ansible-playbook run.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) – Disable all output

	json_mode (bool [https://docs.python.org/3/library/functions.html#bool]) – Store event data in place of stdout on the console and in the stdout file

	artifact_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the directory where artifacts should live, this defaults to ‘artifacts’ under the private data dir

	project_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the playbook content, this defaults to ‘project’ within the private data dir

	rotate_artifacts (int [https://docs.python.org/3/library/functions.html#int]) – Keep at most n artifact directories, disable with a value of 0 which is the default

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The timeout value in seconds that will be passed to either pexpect of subprocess invocation
(based on runner_mode selected) while executing command. It the timeout is triggered it will force cancel the
execution.

	process_isolation (bool [https://docs.python.org/3/library/functions.html#bool]) – Enable process isolation, using a container engine (e.g. podman).

	process_isolation_executable (str [https://docs.python.org/3/library/stdtypes.html#str]) – Process isolation executable or container engine used to isolate execution. (default: podman)

	container_image (str [https://docs.python.org/3/library/stdtypes.html#str]) – Container image to use when running an ansible task (default: quay.io/ansible/ansible-runner:devel)

	container_volume_mounts (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of bind mounts in the form ‘host_dir:/container_dir:labels. (default: None)

	container_options (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of container options to pass to execution engine.

	container_workdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The working directory within the container.

	fact_cache (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that will be used as the name for the subdirectory of the fact cache in artifacts directory.
This is only used for ‘jsonfile’ type fact caches.

	fact_cache_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string of the type of fact cache to use. Defaults to ‘jsonfile’.

	private_data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory containing all runner metadata needed to invoke the runner
module. Output artifacts will also be stored here for later consumption.

	ident (str [https://docs.python.org/3/library/stdtypes.html#str]) – The run identifier for this invocation of Runner. Will be used to create and name
the artifact directory holding the results of the invocation.

	event_handler (Callable) – An optional callback that will be invoked any time an event is received by Runner itself, return True to keep the event

	cancel_callback (Callable) – An optional callback that can inform runner to cancel (returning True) or not (returning False)

	finished_callback (Callable) – An optional callback that will be invoked at shutdown after process cleanup.

	status_handler (Callable) – An optional callback that will be invoked any time the status changes (e.g…started, running, failed, successful, timeout)

	artifacts_handler (Callable) – An optional callback that will be invoked at the end of the run to deal with the artifacts from the run.

	check_job_event_data (bool [https://docs.python.org/3/library/functions.html#bool]) – Check if job events data is completely generated. If event data is not completely generated and if
value is set to ‘True’ it will raise ‘AnsibleRunnerException’ exception,
if set to ‘False’ it log a debug message and continue execution. Default value is ‘False’

	Returns

	Returns a tuple of response and error string. In case if runner_mode is set to pexpect the error value is
empty as pexpect uses same output descriptor for stdout and stderr.

	
ansible_runner.interface.get_inventory(action, inventories, response_format=None, host=None, playbook_dir=None, vault_ids=None, vault_password_file=None, output_file=None, export=None, **kwargs)

	Run an ansible-inventory command to get inventory related details.

	Parameters

	
	action (str [https://docs.python.org/3/library/stdtypes.html#str]) – Valid values are one of graph, host, list
graph create inventory graph, host returns specific host info and works as inventory script and
list output all hosts info and also works as inventory script.

	inventories (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of inventory host path.

	response_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output format for response. Valid values can be one of json, yaml, toml.
Default is json. If action is graph only allowed value is json.

	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – When action is set to host this parameter is used to get the host specific information.

	playbook_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – This parameter is used to sets the relative path for the inventory.

	vault_ids (str [https://docs.python.org/3/library/stdtypes.html#str]) – The vault identity to use.

	vault_password_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The vault password files to use.

	output_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file path in which inventory details should be sent to.

	export (bool [https://docs.python.org/3/library/functions.html#bool]) – The boolean value if set represent in a way that is optimized for export,not as an accurate
representation of how Ansible has processed it.

	runner_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The applicable values are pexpect and subprocess. Default is set to subprocess.

	host_cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) – The host current working directory to be mounted within the container (if enabled) and will be
the work directory within container.

	envvars (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be used when running Ansible. Environment variables will also be
read from env/envvars in private_data_dir

	passwords (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing password prompt patterns and response values used when processing output from
Ansible. Passwords will also be read from env/passwords in private_data_dir.

	settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing settings values for the ansible-runner runtime environment. These will also
be read from env/settings in private_data_dir.

	ssh_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ssh private key passed to ssh-agent as part of the ansible-playbook run.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) – Disable all output

	json_mode (bool [https://docs.python.org/3/library/functions.html#bool]) – Store event data in place of stdout on the console and in the stdout file

	artifact_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the directory where artifacts should live, this defaults to ‘artifacts’ under the private data dir

	project_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the playbook content, this defaults to ‘project’ within the private data dir

	rotate_artifacts (int [https://docs.python.org/3/library/functions.html#int]) – Keep at most n artifact directories, disable with a value of 0 which is the default

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The timeout value in seconds that will be passed to either pexpect of subprocess invocation
(based on runner_mode selected) while executing command. It the timeout is triggered it will force cancel the
execution.

	process_isolation (bool [https://docs.python.org/3/library/functions.html#bool]) – Enable process isolation, using a container engine (e.g. podman).

	process_isolation_executable (str [https://docs.python.org/3/library/stdtypes.html#str]) – Process isolation executable or container engine used to isolate execution. (default: podman)

	container_image (str [https://docs.python.org/3/library/stdtypes.html#str]) – Container image to use when running an ansible task (default: quay.io/ansible/ansible-runner:devel)

	container_volume_mounts (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of bind mounts in the form ‘host_dir:/container_dir:labels. (default: None)

	container_options (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of container options to pass to execution engine.

	container_workdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The working directory within the container.

	fact_cache (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that will be used as the name for the subdirectory of the fact cache in artifacts directory.
This is only used for ‘jsonfile’ type fact caches.

	fact_cache_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string of the type of fact cache to use. Defaults to ‘jsonfile’.

	private_data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory containing all runner metadata needed to invoke the runner
module. Output artifacts will also be stored here for later consumption.

	ident (str [https://docs.python.org/3/library/stdtypes.html#str]) – The run identifier for this invocation of Runner. Will be used to create and name
the artifact directory holding the results of the invocation.

	event_handler (Callable) – An optional callback that will be invoked any time an event is received by Runner itself, return True to keep the event

	cancel_callback (Callable) – An optional callback that can inform runner to cancel (returning True) or not (returning False)

	finished_callback (Callable) – An optional callback that will be invoked at shutdown after process cleanup.

	status_handler (Callable) – An optional callback that will be invoked any time the status changes (e.g…started, running, failed, successful, timeout)

	artifacts_handler (Callable) – An optional callback that will be invoked at the end of the run to deal with the artifacts from the run.

	check_job_event_data (bool [https://docs.python.org/3/library/functions.html#bool]) – Check if job events data is completely generated. If event data is not completely generated and if
value is set to ‘True’ it will raise ‘AnsibleRunnerException’ exception,
if set to ‘False’ it log a debug message and continue execution. Default value is ‘False’

	Returns

	Returns a tuple of response and error string. In case if runner_mode is set to pexpect the error value is
empty as pexpect uses same output descriptor for stdout and stderr. If the vaue of response_format is json
it returns a python dictionary object.

	
ansible_runner.interface.get_plugin_docs(plugin_names, plugin_type=None, response_format=None, snippet=False, playbook_dir=None, module_path=None, **kwargs)

	Run an ansible-doc command to get plugin docs in the foreground and return a Runner object when complete.

	Parameters

	
	plugin_names (list [https://docs.python.org/3/library/stdtypes.html#list]) – The name of the plugins to get docs.

	plugin_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of the plugin mentioned in plugins_names. Valid values are become, cache, callback,
cliconf, connection, httpapi, inventory, lookup, netconf, shell, vars,
module, strategy. If the value is not provided it defaults to module.

	response_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output format for response. Valid values can be one of json or human and the response
is either json string or plain text in human readable foramt. Default value is json.

	snippet (bool [https://docs.python.org/3/library/functions.html#bool]) – Show playbook snippet for specified plugin(s).

	playbook_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – This parameter is used to sets the relative path to handle playbook adjacent installed plugins.

	module_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – This parameter is prepend colon-separated path(s) to module library
(default=~/.ansible/plugins/modules:/usr/share/ansible/plugins/modules).

	runner_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The applicable values are pexpect and subprocess. Default is set to subprocess.

	host_cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) – The host current working directory to be mounted within the container (if enabled) and will be
the work directory within container.

	envvars (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be used when running Ansible. Environment variables will also be
read from env/envvars in private_data_dir

	passwords (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing password prompt patterns and response values used when processing output from
Ansible. Passwords will also be read from env/passwords in private_data_dir.

	settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing settings values for the ansible-runner runtime environment. These will also
be read from env/settings in private_data_dir.

	ssh_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ssh private key passed to ssh-agent as part of the ansible-playbook run.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) – Disable all output

	json_mode (bool [https://docs.python.org/3/library/functions.html#bool]) – Store event data in place of stdout on the console and in the stdout file

	artifact_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the directory where artifacts should live, this defaults to ‘artifacts’ under the private data dir

	project_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the playbook content, this defaults to ‘project’ within the private data dir

	rotate_artifacts (int [https://docs.python.org/3/library/functions.html#int]) – Keep at most n artifact directories, disable with a value of 0 which is the default

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The timeout value in seconds that will be passed to either pexpect of subprocess invocation
(based on runner_mode selected) while executing command. It the timeout is triggered it will force cancel the
execution.

	process_isolation (bool [https://docs.python.org/3/library/functions.html#bool]) – Enable process isolation, using a container engine (e.g. podman).

	process_isolation_executable (str [https://docs.python.org/3/library/stdtypes.html#str]) – Process isolation executable or container engine used to isolate execution. (default: podman)

	container_image (str [https://docs.python.org/3/library/stdtypes.html#str]) – Container image to use when running an ansible task (default: quay.io/ansible/ansible-runner:devel)

	container_volume_mounts (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of bind mounts in the form ‘host_dir:/container_dir:labels. (default: None)

	container_options (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of container options to pass to execution engine.

	container_workdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The working directory within the container.

	fact_cache (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that will be used as the name for the subdirectory of the fact cache in artifacts directory.
This is only used for ‘jsonfile’ type fact caches.

	fact_cache_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string of the type of fact cache to use. Defaults to ‘jsonfile’.

	private_data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory containing all runner metadata needed to invoke the runner
module. Output artifacts will also be stored here for later consumption.

	ident (str [https://docs.python.org/3/library/stdtypes.html#str]) – The run identifier for this invocation of Runner. Will be used to create and name
the artifact directory holding the results of the invocation.

	event_handler (Callable) – An optional callback that will be invoked any time an event is received by Runner itself, return True to keep the event

	cancel_callback (Callable) – An optional callback that can inform runner to cancel (returning True) or not (returning False)

	finished_callback (Callable) – An optional callback that will be invoked at shutdown after process cleanup.

	status_handler (Callable) – An optional callback that will be invoked any time the status changes (e.g…started, running, failed, successful, timeout)

	artifacts_handler (Callable) – An optional callback that will be invoked at the end of the run to deal with the artifacts from the run.

	check_job_event_data (bool [https://docs.python.org/3/library/functions.html#bool]) – Check if job events data is completely generated. If event data is not completely generated and if
value is set to ‘True’ it will raise ‘AnsibleRunnerException’ exception,
if set to ‘False’ it log a debug message and continue execution. Default value is ‘False’

	Returns

	Returns a tuple of response and error string. In case if runner_mode is set to pexpect the error value is empty as
pexpect uses same output descriptor for stdout and stderr. If the value of response_format is json
it returns a python dictionary object.

	
ansible_runner.interface.get_plugin_docs_async(plugin_names, plugin_type=None, response_format=None, snippet=False, playbook_dir=None, module_path=None, **kwargs)

	Run an ansible-doc command in the background which will start immediately. Returns the thread object and a Runner object.

This uses the same parameters as ansible_runner.interface.get_plugin_docs()

	Returns

	A tuple containing a threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread] object and a ansible_runner.runner.Runner object

	
ansible_runner.interface.get_plugin_list(list_files=None, response_format=None, plugin_type=None, playbook_dir=None, module_path=None, **kwargs)

	Run an ansible-doc command to get list of installed Ansible plugins.

	Parameters

	
	list_files (bool [https://docs.python.org/3/library/functions.html#bool]) – The boolean parameter is set to True returns file path of the plugin along with the plugin name.

	response_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output format for response. Valid values can be one of json or human and the response
is either json string or plain text in human readable foramt. Default value is json.

	plugin_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of the plugin mentioned in plugins_names. Valid values are become, cache, callback,
cliconf, connection, httpapi, inventory, lookup, netconf, shell, vars,
module, strategy. If the value is not provided it defaults to module.

	playbook_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – This parameter is used to sets the relative path to handle playbook adjacent installed plugins.

	module_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – This parameter is prepend colon-separated path(s) to module library
(default=~/.ansible/plugins/modules:/usr/share/ansible/plugins/modules).

	runner_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The applicable values are pexpect and subprocess. Default is set to subprocess.

	host_cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) – The host current working directory to be mounted within the container (if enabled) and will be
the work directory within container.

	envvars (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be used when running Ansible. Environment variables will also be
read from env/envvars in private_data_dir

	passwords (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing password prompt patterns and response values used when processing output from
Ansible. Passwords will also be read from env/passwords in private_data_dir.

	settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing settings values for the ansible-runner runtime environment. These will also
be read from env/settings in private_data_dir.

	ssh_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ssh private key passed to ssh-agent as part of the ansible-playbook run.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) – Disable all output

	json_mode (bool [https://docs.python.org/3/library/functions.html#bool]) – Store event data in place of stdout on the console and in the stdout file

	artifact_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the directory where artifacts should live, this defaults to ‘artifacts’ under the private data dir

	project_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the playbook content, this defaults to ‘project’ within the private data dir

	rotate_artifacts (int [https://docs.python.org/3/library/functions.html#int]) – Keep at most n artifact directories, disable with a value of 0 which is the default

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The timeout value in seconds that will be passed to either pexpect of subprocess invocation
(based on runner_mode selected) while executing command. It the timeout is triggered it will force cancel the
execution.

	process_isolation (bool [https://docs.python.org/3/library/functions.html#bool]) – Enable process isolation, using a container engine (e.g. podman).

	process_isolation_executable (str [https://docs.python.org/3/library/stdtypes.html#str]) – Process isolation executable or container engine used to isolate execution. (default: podman)

	container_image (str [https://docs.python.org/3/library/stdtypes.html#str]) – Container image to use when running an ansible task (default: quay.io/ansible/ansible-runner:devel)

	container_volume_mounts (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of bind mounts in the form ‘host_dir:/container_dir:labels. (default: None)

	container_options (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of container options to pass to execution engine.

	container_workdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The working directory within the container.

	fact_cache (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that will be used as the name for the subdirectory of the fact cache in artifacts directory.
This is only used for ‘jsonfile’ type fact caches.

	fact_cache_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string of the type of fact cache to use. Defaults to ‘jsonfile’.

	private_data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory containing all runner metadata needed to invoke the runner
module. Output artifacts will also be stored here for later consumption.

	ident (str [https://docs.python.org/3/library/stdtypes.html#str]) – The run identifier for this invocation of Runner. Will be used to create and name
the artifact directory holding the results of the invocation.

	event_handler (Callable) – An optional callback that will be invoked any time an event is received by Runner itself, return True to keep the event

	cancel_callback (Callable) – An optional callback that can inform runner to cancel (returning True) or not (returning False)

	finished_callback (Callable) – An optional callback that will be invoked at shutdown after process cleanup.

	status_handler (Callable) – An optional callback that will be invoked any time the status changes (e.g…started, running, failed, successful, timeout)

	artifacts_handler (Callable) – An optional callback that will be invoked at the end of the run to deal with the artifacts from the run.

	check_job_event_data (bool [https://docs.python.org/3/library/functions.html#bool]) – Check if job events data is completely generated. If event data is not completely generated and if
value is set to ‘True’ it will raise ‘AnsibleRunnerException’ exception,
if set to ‘False’ it log a debug message and continue execution. Default value is ‘False’

	Returns

	Returns a tuple of response and error string. In case if runner_mode is set to pexpect the error value is empty as
pexpect uses same output descriptor for stdout and stderr. If the vaue of response_format is json
it returns a python dictionary object.

	
ansible_runner.interface.init_command_config(executable_cmd, cmdline_args=None, **kwargs)

	Initialize the Runner() instance

This function will properly initialize both run_command() and run_command_async()
functions in the same way and return a value instance of Runner.

See parameters given to ansible_runner.interface.run_command()

	
ansible_runner.interface.init_plugin_docs_config(plugin_names, plugin_type=None, response_format=None, snippet=False, playbook_dir=None, module_path=None, **kwargs)

	Initialize the Runner() instance

This function will properly initialize both get_plugin_docs() and get_plugin_docs_async()
functions in the same way and return a value instance of Runner.

See parameters given to ansible_runner.interface.get_plugin_docs()

	
ansible_runner.interface.init_runner(**kwargs)

	Initialize the Runner() instance

This function will properly initialize both run() and run_async()
functions in the same way and return a value instance of Runner.

See parameters given to ansible_runner.interface.run()

	
ansible_runner.interface.run(**kwargs)

	Run an Ansible Runner task in the foreground and return a Runner object when complete.

	Parameters

	
	private_data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory containing all runner metadata needed to invoke the runner
module. Output artifacts will also be stored here for later consumption.

	ident (str [https://docs.python.org/3/library/stdtypes.html#str]) – The run identifier for this invocation of Runner. Will be used to create and name
the artifact directory holding the results of the invocation.

	json_mode (bool [https://docs.python.org/3/library/functions.html#bool]) – Store event data in place of stdout on the console and in the stdout file

	playbook (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The playbook (either a list or dictionary of plays, or as a path relative to
private_data_dir/project) that will be invoked by runner when executing Ansible.

	module (str [https://docs.python.org/3/library/stdtypes.html#str]) – The module that will be invoked in ad-hoc mode by runner when executing Ansible.

	module_args (str [https://docs.python.org/3/library/stdtypes.html#str]) – The module arguments that will be supplied to ad-hoc mode.

	host_pattern (str [https://docs.python.org/3/library/stdtypes.html#str]) – The host pattern to match when running in ad-hoc mode.

	inventory (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict] or list [https://docs.python.org/3/library/stdtypes.html#list]) – Overrides the inventory directory/file (supplied at private_data_dir/inventory) with
a specific host or list of hosts. This can take the form of:

	Path to the inventory file in the private_data_dir

	Native python dict supporting the YAML/json inventory structure

	A text INI formatted string

	A list of inventory sources, or an empty list to disable passing inventory

	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the role to execute.

	roles_path (dict [https://docs.python.org/3/library/stdtypes.html#dict] or list [https://docs.python.org/3/library/stdtypes.html#list]) – Directory or list of directories to assign to ANSIBLE_ROLES_PATH

	envvars (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be used when running Ansible. Environment variables will also be
read from env/envvars in private_data_dir

	extravars (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Extra variables to be passed to Ansible at runtime using -e. Extra vars will also be
read from env/extravars in private_data_dir.

	passwords (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing password prompt patterns and response values used when processing output from
Ansible. Passwords will also be read from env/passwords in private_data_dir.

	settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing settings values for the ansible-runner runtime environment. These will also
be read from env/settings in private_data_dir.

	ssh_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ssh private key passed to ssh-agent as part of the ansible-playbook run.

	cmdline (str [https://docs.python.org/3/library/stdtypes.html#str]) – Command line options passed to Ansible read from env/cmdline in private_data_dir

	limit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Matches ansible’s --limit parameter to further constrain the inventory to be used

	forks (int [https://docs.python.org/3/library/functions.html#int]) – Control Ansible parallel concurrency

	verbosity (int [https://docs.python.org/3/library/functions.html#int]) – Control how verbose the output of ansible-playbook is

	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) – Disable all output

	artifact_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the directory where artifacts should live, this defaults to ‘artifacts’ under the private data dir

	project_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the playbook content, this defaults to ‘project’ within the private data dir

	rotate_artifacts (int [https://docs.python.org/3/library/functions.html#int]) – Keep at most n artifact directories, disable with a value of 0 which is the default

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The timeout value in seconds that will be passed to either pexpect of subprocess invocation
(based on runner_mode selected) while executing command. It the timeout is triggered it will force cancel the
execution.

	streamer (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optionally invoke ansible-runner as one of the steps in the streaming pipeline

	_input (io.FileIO [https://docs.python.org/3/library/io.html#io.FileIO]) – An optional file or file-like object for use as input in a streaming pipeline

	_output (io.FileIO [https://docs.python.org/3/library/io.html#io.FileIO]) – An optional file or file-like object for use as output in a streaming pipeline

	event_handler (Callable) – An optional callback that will be invoked any time an event is received by Runner itself, return True to keep the event

	cancel_callback (Callable) – An optional callback that can inform runner to cancel (returning True) or not (returning False)

	finished_callback (Callable) – An optional callback that will be invoked at shutdown after process cleanup.

	status_handler (Callable) – An optional callback that will be invoked any time the status changes (e.g…started, running, failed, successful, timeout)

	artifacts_handler (Callable) – An optional callback that will be invoked at the end of the run to deal with the artifacts from the run.

	process_isolation (bool [https://docs.python.org/3/library/functions.html#bool]) – Enable process isolation, using either a container engine (e.g. podman) or a sandbox (e.g. bwrap).

	process_isolation_executable (str [https://docs.python.org/3/library/stdtypes.html#str]) – Process isolation executable or container engine used to isolate execution. (default: podman)

	process_isolation_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path that an isolated playbook run will use for staging. (default: /tmp)

	process_isolation_hide_paths (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – A path or list of paths on the system that should be hidden from the playbook run.

	process_isolation_show_paths (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – A path or list of paths on the system that should be exposed to the playbook run.

	process_isolation_ro_paths (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – A path or list of paths on the system that should be exposed to the playbook run as read-only.

	container_image (str [https://docs.python.org/3/library/stdtypes.html#str]) – Container image to use when running an ansible task (default: quay.io/ansible/ansible-runner:devel)

	container_volume_mounts (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of bind mounts in the form ‘host_dir:/container_dir. (default: None)

	container_options (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of container options to pass to execution engine.

	resource_profiling (bool [https://docs.python.org/3/library/functions.html#bool]) – Enable collection of resource utilization data during playbook execution.

	resource_profiling_base_cgroup (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of existing cgroup which will be sub-grouped in order to measure
resource utilization (default: ansible-runner)

	resource_profiling_cpu_poll_interval (float [https://docs.python.org/3/library/functions.html#float]) – Interval (in seconds) between CPU polling for determining CPU usage (default: 0.25)

	resource_profiling_memory_poll_interval (float [https://docs.python.org/3/library/functions.html#float]) – Interval (in seconds) between memory polling for determining memory usage (default: 0.25)

	resource_profiling_pid_poll_interval (float [https://docs.python.org/3/library/functions.html#float]) – Interval (in seconds) between polling PID count for determining number of processes used (default: 0.25)

	resource_profiling_results_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Directory where profiling data files should be saved (defaults to profiling_data folder inside private data dir)

	directory_isolation_base_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional path will be used as the base path to create a temp directory, the project contents will be
copied to this location which will then be used as the working directory during playbook execution.

	fact_cache (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that will be used as the name for the subdirectory of the fact cache in artifacts directory.
This is only used for ‘jsonfile’ type fact caches.

	fact_cache_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string of the type of fact cache to use. Defaults to ‘jsonfile’.

	omit_event_data (bool [https://docs.python.org/3/library/functions.html#bool]) – Omits extra ansible event data from event payload (stdout and event still included)

	only_failed_event_data (bool [https://docs.python.org/3/library/functions.html#bool]) – Omits extra ansible event data unless it’s a failed event (stdout and event still included)

	check_job_event_data (bool [https://docs.python.org/3/library/functions.html#bool]) – Check if job events data is completely generated. If event data is not completely generated and if
value is set to ‘True’ it will raise ‘AnsibleRunnerException’ exception,
if set to ‘False’ it log a debug message and continue execution. Default value is ‘False’

	Returns

	A ansible_runner.runner.Runner object, or a simple object containing rc if run remotely

	
ansible_runner.interface.run_async(**kwargs)

	Runs an Ansible Runner task in the background which will start immediately. Returns the thread object and a Runner object.

This uses the same parameters as ansible_runner.interface.run()

	Returns

	A tuple containing a threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread] object and a ansible_runner.runner.Runner object

	
ansible_runner.interface.run_command(executable_cmd, cmdline_args=None, **kwargs)

	Run an (Ansible) commands in the foreground and return a Runner object when complete.

	Parameters

	
	executable_cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – The command to be executed.

	cmdline_args (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of arguments to be passed to the executable command.

	input_fd (int [https://docs.python.org/3/library/functions.html#int]) – This parameter is applicable when runner_mode is set to subprocess, it provides the
input file descrption to interact with the sub-process running the command.

	output_fd (int [https://docs.python.org/3/library/functions.html#int]) – The output file descriptor to stream the output of command execution.

	error_fd (int [https://docs.python.org/3/library/functions.html#int]) – This parameter is applicable when runner_mode is set to subprocess, it provides the
error file descrption to read the error received while executing the command.

	runner_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The applicable values are pexpect and subprocess. If the value of input_fd parameter
is set or the executable command is one of ansible-config, ansible-doc or ansible-galaxy
the default value is set to subprocess else in other cases it is set to pexpect.

	host_cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) – The host current working directory to be mounted within the container (if enabled) and will be
the work directory within container.

	envvars (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be used when running Ansible. Environment variables will also be
read from env/envvars in private_data_dir

	passwords (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing password prompt patterns and response values used when processing output from
Ansible. Passwords will also be read from env/passwords in private_data_dir.

	settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing settings values for the ansible-runner runtime environment. These will also
be read from env/settings in private_data_dir.

	ssh_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ssh private key passed to ssh-agent as part of the ansible-playbook run.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) – Disable all output

	json_mode (bool [https://docs.python.org/3/library/functions.html#bool]) – Store event data in place of stdout on the console and in the stdout file

	artifact_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the directory where artifacts should live, this defaults to ‘artifacts’ under the private data dir

	project_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the playbook content, this defaults to ‘project’ within the private data dir

	rotate_artifacts (int [https://docs.python.org/3/library/functions.html#int]) – Keep at most n artifact directories, disable with a value of 0 which is the default

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The timeout value in seconds that will be passed to either pexpect of subprocess invocation
(based on runner_mode selected) while executing command. It the timeout is triggered it will force cancel the
execution.

	process_isolation (bool [https://docs.python.org/3/library/functions.html#bool]) – Enable process isolation, using a container engine (e.g. podman).

	process_isolation_executable (str [https://docs.python.org/3/library/stdtypes.html#str]) – Process isolation executable or container engine used to isolate execution. (default: podman)

	container_image (str [https://docs.python.org/3/library/stdtypes.html#str]) – Container image to use when running an ansible task (default: quay.io/ansible/ansible-runner:devel)

	container_volume_mounts (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of bind mounts in the form ‘host_dir:/container_dir:labels. (default: None)

	container_options (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of container options to pass to execution engine.

	container_workdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The working directory within the container.

	fact_cache (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that will be used as the name for the subdirectory of the fact cache in artifacts directory.
This is only used for ‘jsonfile’ type fact caches.

	fact_cache_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string of the type of fact cache to use. Defaults to ‘jsonfile’.

	private_data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory containing all runner metadata needed to invoke the runner
module. Output artifacts will also be stored here for later consumption.

	ident (str [https://docs.python.org/3/library/stdtypes.html#str]) – The run identifier for this invocation of Runner. Will be used to create and name
the artifact directory holding the results of the invocation.

	event_handler (Callable) – An optional callback that will be invoked any time an event is received by Runner itself, return True to keep the event

	cancel_callback (Callable) – An optional callback that can inform runner to cancel (returning True) or not (returning False)

	finished_callback (Callable) – An optional callback that will be invoked at shutdown after process cleanup.

	status_handler (Callable) – An optional callback that will be invoked any time the status changes (e.g…started, running, failed, successful, timeout)

	artifacts_handler (Callable) – An optional callback that will be invoked at the end of the run to deal with the artifacts from the run.

	check_job_event_data (bool [https://docs.python.org/3/library/functions.html#bool]) – Check if job events data is completely generated. If event data is not completely generated and if
value is set to ‘True’ it will raise ‘AnsibleRunnerException’ exception,
if set to ‘False’ it log a debug message and continue execution. Default value is ‘False’

	Returns

	Returns a tuple of response, error string and return code.
In case if runner_mode is set to pexpect the error value is empty as
pexpect uses same output descriptor for stdout and stderr.

	
ansible_runner.interface.run_command_async(executable_cmd, cmdline_args=None, **kwargs)

	Run an (Ansible) commands in the background which will start immediately. Returns the thread object and a Runner object.

This uses the same parameters as ansible_runner.interface.run_command()

	Returns

	A tuple containing a threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread] object and a ansible_runner.runner.Runner object

ansible_runner.loader module

	
class ansible_runner.loader.ArtifactLoader(base_path)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Handles loading and caching file contents from disk

This class will load the file contents and attempt to deserialize the
contents as either JSON or YAML. If the file contents cannot be
deserialized, the contents will be returned to the caller as a string.

The deserialized file contents are stored as a cached object in the
instance to avoid any additional reads from disk for subsequent calls
to load the same file.

	
abspath(path)

	Transform the path to an absolute path

	Args:
	path (string): The path to transform to an absolute path

	Returns:
	string: The absolute path to the file

	
get_contents(path)

	Loads the contents of the file specified by path

	Args:
	
	path (string): The relative or absolute path to the file to
	be loaded. If the path is relative, then it is combined
with the base_path to generate a full path string

	Returns:
	string: The contents of the file as a string

	Raises:
	ConfigurationError: If the file cannot be loaded

	
isfile(path)

	Check if the path is a file

	Params path

	The path to the file to check. If the path is relative
it will be exanded to an absolute path

	Returns

	boolean

	
load_file(path, objtype=None, encoding='utf-8')

	Load the file specified by path

This method will first try to load the file contents from cache and
if there is a cache miss, it will load the contents from disk

	Args:
	path (string): The full or relative path to the file to be loaded

encoding (string): The file contents text encoding

	objtype (object): The object type of the file contents. This
	is used to type check the deserialized content against the
contents loaded from disk.
Ignore serializing if objtype is string_types

	Returns:
	
	object: The deserialized file contents which could be either a
	string object or a dict object

	Raises:
	ConfigurationError:

ansible_runner.runner module

	
class ansible_runner.runner.Runner(config, cancel_callback=None, remove_partials=True, event_handler=None, artifacts_handler=None, finished_callback=None, status_handler=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
event_callback(event_data)

	Invoked for every Ansible event to collect stdout with the event data and store it for
later use

	
property events

	A generator that will return all ansible job events in the order that they were emitted from Ansible

	Example

	

 {
 "event": "runner_on_ok",
 "uuid": "00a50d9c-161a-4b74-b978-9f60becaf209",
 "stdout": "ok: [localhost] => {\r\n \" msg\":\"Test!\"\r\n}",
 "counter": 6,
 "pid": 740,
 "created": "2018-04-05T18:24:36.096725",
 "end_line": 10,
 "start_line": 7,
 "event_data": {
 "play_pattern": "all",
 "play": "all",
 "task": "debug",
 "task_args": "msg=Test!",
 "remote_addr": "localhost",
 "res": {
 "msg": "Test!",
 "changed": false,
 "_ansible_verbose_always": true,
 "_ansible_no_log": false
 },
 "pid": 740,
 "play_uuid": "0242ac11-0002-443b-cdb1-000000000006",
 "task_uuid": "0242ac11-0002-443b-cdb1-000000000008",
 "event_loop": null,
 "playbook_uuid": "634edeee-3228-4c17-a1b4-f010fdd42eb2",
 "playbook": "test.yml",
 "task_action": "debug",
 "host": "localhost",
 "task_path": "/tmp/demo/project/test.yml:3"
 }
}

	
get_fact_cache(host)

	Get the entire fact cache only if the fact_cache_type is ‘jsonfile’

	
classmethod handle_termination(pid, pidfile=None, is_cancel=True)

	Internal method to terminate a subprocess spawned by pexpect representing an invocation of runner.

	Parameters

	
	pid – the process id of the running the job.

	pidfile – the daemon’s PID file

	is_cancel – flag showing whether this termination is caused by
instance’s cancel_flag.

	
host_events(host)

	Given a host name, this will return all task events executed on that host

	
kill_container()

	Internal method to terminate a container being used for job isolation

	
run()

	Launch the Ansible task configured in self.config (A RunnerConfig object), returns once the
invocation is complete

	
set_fact_cache(host, data)

	Set the entire fact cache data only if the fact_cache_type is ‘jsonfile’

	
property stats

	Returns the final high level stats from the Ansible run

	Example:
	{‘dark’: {}, ‘failures’: {}, ‘skipped’: {}, ‘ok’: {u’localhost’: 2}, ‘processed’: {u’localhost’: 1}}

	
status_callback(status)

	

	
property stderr

	Returns an open file handle to the stderr representing the Ansible run

	
property stdout

	Returns an open file handle to the stdout representing the Ansible run

ansible_runner.runner_config module

ansible_runner.utils module

	
class ansible_runner.utils.Bunch(**kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Collect a bunch of variables together in an object.
This is a slight modification of Alex Martelli’s and Doug Hudgeon’s Bunch pattern.

	
get(key)

	

	
update(**kwargs)

	

	
class ansible_runner.utils.OutputEventFilter(handle, event_callback, suppress_ansible_output=False, output_json=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

File-like object that looks for encoded job events in stdout data.

	
EVENT_DATA_RE = re.compile('\\x1b\\[K((?:[A-Za-z0-9+/=]+\\x1b\\[\\d+D)+)\\x1b\\[K')

	

	
close()

	

	
flush()

	

	
write(data)

	

	
ansible_runner.utils.args2cmdline(*args)

	

	
ansible_runner.utils.check_isolation_executable_installed(isolation_executable)

	Check that process isolation executable (e.g. podman, docker, bwrap) is installed.

	
ansible_runner.utils.cleanup_artifact_dir(path, num_keep=0)

	

	
ansible_runner.utils.cleanup_folder(folder)

	Deletes folder, returns True or False based on whether a change happened.

	
ansible_runner.utils.cli_mounts()

	

	
ansible_runner.utils.collect_new_events(event_path, old_events)

	Collect new events for the ‘events’ generator property

	
ansible_runner.utils.dump_artifact(obj, path, filename=None)

	Write the artifact to disk at the specified path

	Args:
	
	obj (string): The string object to be dumped to disk in the specified
	path. The artifact filename will be automatically created

path (string): The full path to the artifacts data directory.

	filename (string, optional): The name of file to write the artifact to.
	If the filename is not provided, then one will be generated.

	Returns:
	string: The full path filename for the artifact that was generated

	
ansible_runner.utils.dump_artifacts(kwargs)

	Introspect the kwargs and dump objects to disk

	
ansible_runner.utils.ensure_str(s, encoding='utf-8', errors='strict')

	Copied from six==1.12

Coerce s to str.

For Python 2:

	unicode -> encoded to str

	str -> str

For Python 3:

	str -> str

	bytes -> decoded to str

	
ansible_runner.utils.get_executable_path(name)

	

	
ansible_runner.utils.isinventory(obj)

	Inspects the object and returns if it is an inventory

	Args:
	obj (object): The object to be inspected by this function

	Returns:
	boolean: True if the object is an inventory dict and False if it is not

	
ansible_runner.utils.isplaybook(obj)

	Inspects the object and returns if it is a playbook

	Args:
	obj (object): The object to be inspected by this function

	Returns:
	boolean: True if the object is a list and False if it is not

	
ansible_runner.utils.open_fifo_write(path, data)

	open_fifo_write opens the fifo named pipe in a new thread.
This blocks the thread until an external process (such as ssh-agent)
reads data from the pipe.

	
ansible_runner.utils.register_for_cleanup(folder)

	Provide the path to a folder to make sure it is deleted when execution finishes.
The folder need not exist at the time when this is called.

	
ansible_runner.utils.sanitize_container_name(original_name)

	Docker and podman will only accept certain characters in container names
This takes a given name from user-specified values and replaces the
invalid characters so it can be used in docker/podman CLI commands

	Parameters

	original_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Container name containing potentially invalid characters

	
ansible_runner.utils.santize_json_response(data)

	Removes warning message from response message emitted by Ansible
command line utilities.

	Parameters

	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string data to be sanitized

	
ansible_runner.utils.signal_handler()

	

ansible_runner.callbacks package

Submodules

ansible_runner.callbacks.awx_display module

	
class ansible_runner.callbacks.awx_display.CallbackModule

	

ansible_runner.callbacks.minimal module

	
class ansible_runner.callbacks.minimal.CallbackModule

	

ansible_runner.config package

Submodules

ansible_runner.config.runner module

	
class ansible_runner.config.runner.RunnerConfig(private_data_dir, playbook=None, inventory=None, roles_path=None, limit=None, module=None, module_args=None, verbosity=None, host_pattern=None, binary=None, extravars=None, suppress_ansible_output=False, process_isolation_path=None, process_isolation_hide_paths=None, process_isolation_show_paths=None, process_isolation_ro_paths=None, resource_profiling=False, resource_profiling_base_cgroup='ansible-runner', resource_profiling_cpu_poll_interval=0.25, resource_profiling_memory_poll_interval=0.25, resource_profiling_pid_poll_interval=0.25, resource_profiling_results_dir=None, tags=None, skip_tags=None, directory_isolation_base_path=None, forks=None, cmdline=None, omit_event_data=False, only_failed_event_data=False, **kwargs)

	A Runner configuration object that’s meant to encapsulate the configuration used by the
ansible_runner.runner.Runner object to launch and manage the invocation of ansible
and ansible-playbook

Typically this object is initialized for you when using the standard run interfaces in ansible_runner.interface
but can be used to construct the Runner configuration to be invoked elsewhere. It can also be overridden to provide different
functionality to the Runner object.

	Example

	

>>> rc = RunnerConfig(...)
>>> r = Runner(config=rc)
>>> r.run()

ansible_runner.display_callback package

Submodules

ansible_runner.display_callback.display module

ansible_runner.display_callback.events module

ansible_runner.display_callback.minimal module

	
class ansible_runner.display_callback.minimal.CallbackModule(display=None, options=None)

	This is the default callback interface, which simply prints messages
to stdout when new callback events are received.

	
CALLBACK_NAME = 'minimal'

	

	
CALLBACK_TYPE = 'stdout'

	

	
CALLBACK_VERSION = 2.0

	

	
v2_on_file_diff(result)

	

	
v2_runner_on_failed(result, ignore_errors=False)

	

	
v2_runner_on_ok(result)

	

	
v2_runner_on_skipped(result)

	

	
v2_runner_on_unreachable(result)

	

ansible_runner.display_callback.module module

	
class ansible_runner.display_callback.module.AWXDefaultCallbackModule

	
	
CALLBACK_NAME = 'awx_display'

	

	
class ansible_runner.display_callback.module.AWXMinimalCallbackModule

	
	
CALLBACK_NAME = 'minimal'

	

	
v2_playbook_on_play_start(play)

	

	
v2_playbook_on_task_start(task, is_conditional)

	

	
class ansible_runner.display_callback.module.BaseCallbackModule

	Callback module for logging ansible/ansible-playbook events.

	
CALLBACK_TYPE = 'stdout'

	

	
CALLBACK_VERSION = 2.0

	

	
EVENTS_WITHOUT_PLAY = ['playbook_on_start', 'playbook_on_stats']

	

	
EVENTS_WITHOUT_TASK = ['playbook_on_start', 'playbook_on_stats', 'playbook_on_setup', 'playbook_on_notify', 'playbook_on_import_for_host', 'playbook_on_not_import_for_host', 'playbook_on_no_hosts_matched', 'playbook_on_no_hosts_remaining']

	

	
capture_event_data(event, **event_data)

	

	
clear_play()

	

	
clear_task(local=False)

	

	
set_play(play)

	

	
set_playbook(playbook)

	

	
set_task(task, local=False)

	

	
v2_on_file_diff(result)

	

	
v2_playbook_on_cleanup_task_start(task)

	

	
v2_playbook_on_handler_task_start(task)

	

	
v2_playbook_on_import_for_host(result, imported_file)

	

	
v2_playbook_on_include(included_file)

	

	
v2_playbook_on_no_hosts_matched()

	

	
v2_playbook_on_no_hosts_remaining()

	

	
v2_playbook_on_not_import_for_host(result, missing_file)

	

	
v2_playbook_on_notify(handler, host)

	

	
v2_playbook_on_play_start(play)

	

	
v2_playbook_on_setup()

	

	
v2_playbook_on_start(playbook)

	

	
v2_playbook_on_stats(stats)

	

	
v2_playbook_on_task_start(task, is_conditional)

	

	
v2_playbook_on_vars_prompt(varname, private=True, prompt=None, encrypt=None, confirm=False, salt_size=None, salt=None, default=None, unsafe=None)

	

	
v2_runner_item_on_failed(result)

	

	
v2_runner_item_on_ok(result)

	

	
v2_runner_item_on_skipped(result)

	

	
v2_runner_on_async_failed(result)

	

	
v2_runner_on_async_ok(result)

	

	
v2_runner_on_async_poll(result)

	

	
v2_runner_on_failed(result, ignore_errors=False)

	

	
v2_runner_on_file_diff(result, diff)

	

	
v2_runner_on_no_hosts(task)

	

	
v2_runner_on_ok(result)

	

	
v2_runner_on_skipped(result)

	

	
v2_runner_on_start(host, task)

	Event used when host begins execution of a task

New in version 2.8.

	
v2_runner_on_unreachable(result)

	

	
v2_runner_retry(result)

	

	
ansible_runner.display_callback.module.current_time()

	

Module contents

	
class ansible_runner.display_callback.AWXDefaultCallbackModule

	
	
CALLBACK_NAME = 'awx_display'

	

	
class ansible_runner.display_callback.AWXMinimalCallbackModule

	
	
CALLBACK_NAME = 'minimal'

	

	
v2_playbook_on_play_start(play)

	

	
v2_playbook_on_task_start(task, is_conditional)

	

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 ansible_runner	

 	
 	
 ansible_runner.callbacks.awx_display	

 	
 	
 ansible_runner.callbacks.minimal	

 	
 	
 ansible_runner.display_callback	

 	
 	
 ansible_runner.display_callback.display	

 	
 	
 ansible_runner.display_callback.events	

 	
 	
 ansible_runner.display_callback.minimal	

 	
 	
 ansible_runner.display_callback.module	

 	
 	
 ansible_runner.exceptions	

 	
 	
 ansible_runner.interface	

 	
 	
 ansible_runner.loader	

 	
 	
 ansible_runner.runner	

 	
 	
 ansible_runner.runner_config	

 	
 	
 ansible_runner.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | O
 | R
 | S
 | U
 | V
 | W

A

 	
 	abspath() (ansible_runner.loader.ArtifactLoader method)

 	
 ansible_runner.callbacks.awx_display

 	module

 	
 ansible_runner.callbacks.minimal

 	module

 	
 ansible_runner.display_callback

 	module

 	
 ansible_runner.display_callback.display

 	module

 	
 ansible_runner.display_callback.events

 	module

 	
 ansible_runner.display_callback.minimal

 	module

 	
 ansible_runner.display_callback.module

 	module

 	
 ansible_runner.exceptions

 	module

 	
 	
 ansible_runner.interface

 	module

 	
 ansible_runner.loader

 	module

 	
 ansible_runner.runner

 	module

 	
 ansible_runner.runner_config

 	module

 	
 ansible_runner.utils

 	module

 	AnsibleRunnerException

 	args2cmdline() (in module ansible_runner.utils)

 	ArtifactLoader (class in ansible_runner.loader)

 	AWXDefaultCallbackModule (class in ansible_runner.display_callback)

 	(class in ansible_runner.display_callback.module)

 	AWXMinimalCallbackModule (class in ansible_runner.display_callback)

 	(class in ansible_runner.display_callback.module)

B

 	
 	BaseCallbackModule (class in ansible_runner.display_callback.module)

 	
 	Bunch (class in ansible_runner.utils)

C

 	
 	CALLBACK_NAME (ansible_runner.display_callback.AWXDefaultCallbackModule attribute)

 	(ansible_runner.display_callback.AWXMinimalCallbackModule attribute)

 	(ansible_runner.display_callback.minimal.CallbackModule attribute)

 	(ansible_runner.display_callback.module.AWXDefaultCallbackModule attribute)

 	(ansible_runner.display_callback.module.AWXMinimalCallbackModule attribute)

 	CALLBACK_TYPE (ansible_runner.display_callback.minimal.CallbackModule attribute)

 	(ansible_runner.display_callback.module.BaseCallbackModule attribute)

 	CALLBACK_VERSION (ansible_runner.display_callback.minimal.CallbackModule attribute)

 	(ansible_runner.display_callback.module.BaseCallbackModule attribute)

 	CallbackError

 	CallbackModule (class in ansible_runner.callbacks.awx_display)

 	(class in ansible_runner.callbacks.minimal)

 	(class in ansible_runner.display_callback.minimal)

 	
 	capture_event_data() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	check_isolation_executable_installed() (in module ansible_runner.utils)

 	cleanup_artifact_dir() (in module ansible_runner.utils)

 	cleanup_folder() (in module ansible_runner.utils)

 	clear_play() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	clear_task() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	cli_mounts() (in module ansible_runner.utils)

 	close() (ansible_runner.utils.OutputEventFilter method)

 	collect_new_events() (in module ansible_runner.utils)

 	ConfigurationError

 	current_time() (in module ansible_runner.display_callback.module)

D

 	
 	dump_artifact() (in module ansible_runner.utils)

 	
 	dump_artifacts() (in module ansible_runner.utils)

E

 	
 	ensure_str() (in module ansible_runner.utils)

 	event_callback() (ansible_runner.runner.Runner method)

 	EVENT_DATA_RE (ansible_runner.utils.OutputEventFilter attribute)

 	
 	events (ansible_runner.runner.Runner property)

 	EVENTS_WITHOUT_PLAY (ansible_runner.display_callback.module.BaseCallbackModule attribute)

 	EVENTS_WITHOUT_TASK (ansible_runner.display_callback.module.BaseCallbackModule attribute)

F

 	
 	flush() (ansible_runner.utils.OutputEventFilter method)

G

 	
 	get() (ansible_runner.utils.Bunch method)

 	get_ansible_config() (in module ansible_runner.interface)

 	get_contents() (ansible_runner.loader.ArtifactLoader method)

 	get_executable_path() (in module ansible_runner.utils)

 	
 	get_fact_cache() (ansible_runner.runner.Runner method)

 	get_inventory() (in module ansible_runner.interface)

 	get_plugin_docs() (in module ansible_runner.interface)

 	get_plugin_docs_async() (in module ansible_runner.interface)

 	get_plugin_list() (in module ansible_runner.interface)

H

 	
 	handle_termination() (ansible_runner.runner.Runner class method)

 	
 	host_events() (ansible_runner.runner.Runner method)

I

 	
 	init_command_config() (in module ansible_runner.interface)

 	init_plugin_docs_config() (in module ansible_runner.interface)

 	init_runner() (in module ansible_runner.interface)

 	
 	isfile() (ansible_runner.loader.ArtifactLoader method)

 	isinventory() (in module ansible_runner.utils)

 	isplaybook() (in module ansible_runner.utils)

K

 	
 	kill_container() (ansible_runner.runner.Runner method)

L

 	
 	load_file() (ansible_runner.loader.ArtifactLoader method)

M

 	
 	
 module

 	ansible_runner.callbacks.awx_display

 	ansible_runner.callbacks.minimal

 	ansible_runner.display_callback

 	ansible_runner.display_callback.display

 	ansible_runner.display_callback.events

 	ansible_runner.display_callback.minimal

 	ansible_runner.display_callback.module

 	ansible_runner.exceptions

 	ansible_runner.interface

 	ansible_runner.loader

 	ansible_runner.runner

 	ansible_runner.runner_config

 	ansible_runner.utils

O

 	
 	open_fifo_write() (in module ansible_runner.utils)

 	
 	OutputEventFilter (class in ansible_runner.utils)

R

 	
 	register_for_cleanup() (in module ansible_runner.utils)

 	run() (ansible_runner.runner.Runner method)

 	(in module ansible_runner.interface)

 	run_async() (in module ansible_runner.interface)

 	
 	run_command() (in module ansible_runner.interface)

 	run_command_async() (in module ansible_runner.interface)

 	Runner (class in ansible_runner.runner)

 	RunnerConfig (class in ansible_runner.config.runner)

S

 	
 	sanitize_container_name() (in module ansible_runner.utils)

 	santize_json_response() (in module ansible_runner.utils)

 	set_fact_cache() (ansible_runner.runner.Runner method)

 	set_play() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	set_playbook() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	
 	set_task() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	signal_handler() (in module ansible_runner.utils)

 	stats (ansible_runner.runner.Runner property)

 	status_callback() (ansible_runner.runner.Runner method)

 	stderr (ansible_runner.runner.Runner property)

 	stdout (ansible_runner.runner.Runner property)

U

 	
 	update() (ansible_runner.utils.Bunch method)

V

 	
 	v2_on_file_diff() (ansible_runner.display_callback.minimal.CallbackModule method)

 	(ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_playbook_on_cleanup_task_start() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_playbook_on_handler_task_start() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_playbook_on_import_for_host() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_playbook_on_include() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_playbook_on_no_hosts_matched() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_playbook_on_no_hosts_remaining() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_playbook_on_not_import_for_host() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_playbook_on_notify() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_playbook_on_play_start() (ansible_runner.display_callback.AWXMinimalCallbackModule method)

 	(ansible_runner.display_callback.module.AWXMinimalCallbackModule method)

 	(ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_playbook_on_setup() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_playbook_on_start() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_playbook_on_stats() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_playbook_on_task_start() (ansible_runner.display_callback.AWXMinimalCallbackModule method)

 	(ansible_runner.display_callback.module.AWXMinimalCallbackModule method)

 	(ansible_runner.display_callback.module.BaseCallbackModule method)

 	
 	v2_playbook_on_vars_prompt() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_runner_item_on_failed() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_runner_item_on_ok() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_runner_item_on_skipped() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_runner_on_async_failed() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_runner_on_async_ok() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_runner_on_async_poll() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_runner_on_failed() (ansible_runner.display_callback.minimal.CallbackModule method)

 	(ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_runner_on_file_diff() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_runner_on_no_hosts() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_runner_on_ok() (ansible_runner.display_callback.minimal.CallbackModule method)

 	(ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_runner_on_skipped() (ansible_runner.display_callback.minimal.CallbackModule method)

 	(ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_runner_on_start() (ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_runner_on_unreachable() (ansible_runner.display_callback.minimal.CallbackModule method)

 	(ansible_runner.display_callback.module.BaseCallbackModule method)

 	v2_runner_retry() (ansible_runner.display_callback.module.BaseCallbackModule method)

W

 	
 	write() (ansible_runner.utils.OutputEventFilter method)

 _static/plus.png

nav.xhtml

 Table of Contents

 		
 Ansible Runner

 		
 Introduction to Ansible Runner

 		
 Runner Input Directory Hierarchy

 		
 The env directory

 		
 env/envvars

 		
 env/extravars

 		
 env/passwords

 		
 env/cmdline

 		
 env/ssh_key

 		
 env/settings - Settings for Runner itself

 		
 Process Isolation Settings for Runner

 		
 Container-based Execution

 		
 Performance Data Collection Settings for Runner

 		
 Inventory

 		
 Project

 		
 Modules

 		
 Roles

 		
 Runner Artifacts Directory Hierarchy

 		
 Runner Artifact Job Events (Host and Playbook Events)

 		
 Runner Profiling Data Directory

 		
 Installing Ansible Runner

 		
 Using pip

 		
 Fedora

 		
 Debian

 		
 From source

 		
 Build the distribution

 		
 Building the base container image

 		
 Building the RPM

 		
 Sending Runner Status and Events to External Systems

 		
 Event Structure

 		
 HTTP Status/Event Emitter Plugin

 		
 ZeroMQ Status/Event Emitter Plugin

 		
 Writing your own Plugin

 		
 Using Runner as a standalone command line tool

 		
 Executing Runner in the foreground

 		
 Executing Runner in the background

 		
 Running Playbooks

 		
 Running Modules Directly

 		
 Running Roles Directly

 		
 Running with Process Isolation

 		
 Running with Directory Isolation

 		
 Outputting json (raw event data) to the console instead of normal output

 		
 Cleaning up artifact directories

 		
 Using Runner as a Python Module Interface to Ansible

 		
 Helper Interfaces

 		
 run() helper function

 		
 run_async() helper function

 		
 run_command() helper function

 		
 run_command_async() helper function

 		
 get_plugin_docs() helper function

 		
 get_plugin_docs_async() helper function

 		
 get_plugin_list() helper function

 		
 get_inventory() helper function

 		
 get_ansible_config() helper function

 		
 The Runner object

 		
 Runner.stdout

 		
 Runner.stderr

 		
 Runner.events

 		
 Runner.stats

 		
 Runner.host_events

 		
 Runner.get_fact_cache

 		
 Runner.event_handler

 		
 Runner.cancel_callback

 		
 Runner.finished_callback

 		
 Runner.status_handler

 		
 Usage examples

 		
 Providing custom behavior and inputs

 		
 Using Runner with Execution Environments

 		
 Using Execution Environments from Protected Registries

 		
 Notes and Considerations

 		
 Secrets

 		
 Container Names

 		
 ~/.ssh/ symlinks

 		
 Using Runner as a container interface to Ansible

 		
 Overriding the reference container image

 		
 Gathering output from the reference container image

 		
 Changing the console output to emit raw events

 		
 Remote job execution

 		
 Cleanup of Resources Used by Jobs

 		
 Python API

 		
 Developer Documentation

 		
 ansible_runner package

 		
 Subpackages

 		
 Submodules

_static/file.png

_static/minus.png

